Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions
نویسندگان
چکیده
منابع مشابه
A new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملNumerical Solution of Fokker—Planck Equation Using the Cubic B-Spline Scaling Functions
In this article a numerical technique is presented for the solution of Fokker-–Planck equation. This method uses the cubic B-spline scaling functions. The method consists of expanding the required approximate solution as the elements of cubic B-spline scaling function. Using the operational matrix of derivative, the problem will be reduced to a set of algebraic equations. Some numerical example...
متن کاملGeneralized B-spline functions method for solving optimal control problems
In this paper we introduce a numerical approach that solves optimal control problems (OCPs) using collocation methods. This approach is based upon B-spline functions. The derivative matrices between any two families of B-spline functions are utilized to reduce the solution of OCPs to the solution of nonlinear optimization problems. Numerical experiments confirm our heoretical findings.
متن کاملA Numerical Solution of One Dimensional Heat Equation Using Cubic B-spline Basis Functions
In this paper one dimensional heat equation is solved using Galerkin B-spline Finite Element. Solution is obtained by reducing the initial boundary value problem to the set of Ordinary differential equations. Discretization of the spatial domain is made using cubic B-spline functions as basis functions. The numerical results obtained from the two test problems are compared with the analytical s...
متن کاملExponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
The aim of the present paper is to present a numerical algorithm for the time-dependent generalized regularized long wave equation with boundary conditions. We semi-discretize the continuous problem by means of the Crank–Nicolson finite difference method in the temporal direction and exponential B-spline collocation method in the spatial direction. The method is shown to be unconditionally stab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2012
ISSN: 0307-904X
DOI: 10.1016/j.apm.2011.07.028